DISCLAIMER

I am not a champ in this topic, yet, so a question asked will most probably lead to a nice, never ending, discussion than a sure shot correct(super satisfactory) answer. So you are most welcome to ask...

All the hypothetical scenarios are made in the spirit of the concept and not with any other intention.

It takes a village to raise a compiler.

- Ancient proverb

What/Who do you need for building a Quantum Computer

Image Credits: one of those Tensorflow Talks

An Army with uniquely specific and crazy skill set!

Image Credits: one of those marvel wallpapers

A lot of... • Physicists

- Math guys
- Material Science Engineers

• Computer Scientists and Architects (us)

A BIG BUDGET

Computer Architects

The Prologue

G S Nitesh Narayana

© 2022 G S Nitesh Narayana All Rights Reserved

Quantum Computing

Why this topic?

- Build Interest for this budding topic
- Give a different perspective
- Motivate us to push for actual 'Supremacy'
- Expand (may be even quantumize) our way of thinking
- Because it's just jcrazy and cool!

I agree with Scott Aaronson here

Image Credits: somewhere in nist.gov

- Once there was a cat, known mostly as the Schrodinger's Cat...
- It was put inside a box...

• let's not bother the poor cat, lets say its outside the box living happily

Image Credits: somewhere in news.berkeley.edu and Jorges personal cat pics stash

Consider this Situation

- Eventually Some time in your PhD...
- You have submitted a paper to a conference
- Now till the moment you get the result email...*
- It's in both a state of acceptance and a state of rejection at the same!
- This situation of a state of being and not being is nothing but : superposition! -> Quantum Stuff

Image Credits: somewhere in scitechdaily.com

"Nothing is actually clear in the QUANTUM REALM... well except for the MATH?" - me

A Quantum Computer from the quantum most level

- Stores info in "qubits"
 - Analogous to our 0 and 1 classical bits and 'states'
- Three weird things about qubits
 - Superposition
 - Measurement
 - Entanglement
- A qubit state is represented as follows

$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $|a|^2 + |b|^2 = 1$

Superposition

- Qubit can simultaneously store some amount of 0 and 1
- Qubit as shown earlier:

 $|\Psi\rangle = a|0\rangle + b|1\rangle$

- \circ "Coefficients" express the amount of 0 vs 1 I.E the likelihood, if you read it, whether you'll get 0 or 1
- Probability, if read the qubit, that it will read as 0 is $|a|^2$ $|a|^2 + |b|^2 = 1$

"The principle of quantum superposition states simply that a quantum particle can exists in 2 distinct locations at the same time"

FuBeneystifyingingperpendition:P

How a simple Classical computer will

solve a maze

Image Credits : somewhere in medium

How a Quantum computer will solve a

maze

Image Credits: RSA Conf 2019

All function evaluations in a single run

Gates and weird stuff

• Gates

- Some sort of operations on a set of qubits
- The output is a superposition proportional to each of superposed inputs
- are no longer available

\circ The output overwrites the input qubit, so once the operation is completed the input values

No cloning theorem : <u>Minute Physics</u>

Measurement not so weird

- Reads the value
- BUT after measuring it, the qubit is what you read (no more superposition)

- A property that is not measured need not exist.
- Measurement is an active process that alters the system being measured.

Entanglement is truly weird!

- It is the most powerful and least understood behavior of quantum mechanical physical systems.
- It is the driving engine behind all quantum algorithm implementations,
 - quantum teleportation
 - quantum key distribution
 - superdense coding
 - \circ quantum error correction.
- If you read the first qubit, you know the value of the 2nd one, • Even if, after entangling them, you move them to different galaxies!

Image Credits: from one of the boring references (see reference section)

"Its almost romantic how entangled qubits remain connected no matter the space between them"

Entanglement less weirder...

• Raul went to Diya and asked her for a mango tea and a green tea packet. • She gives him 2 identical tea bags

- Once he uses one and tastes it, he will immediately know what flavor the other tea bag is of!
- Here 2 tea bags were initially entangled!

Image Credits: somewhere in google

• Consider a 4 cube system drawn without a particular frame of reference as shown

• The moment I show you a cube south face **brought forward :**

Your mind will immediately be fixed to that shown frame of reference to all cubes.

Image Credits: from one of the boring references (see reference section)

Power of Entanglement

- If a group of qubits is entangled, it's impossible to describe collective state by talking about the states of individual qubits.
- With 3 entangled qubits, the state will be a super positions of :

- If a set of n qubits is NOT entangled, the state can be expressed compactly with 2n coefficients \circ for each of n qubits, coefficient of 0 and coefficient of 1
- If they are entangled, it takes 2ⁿ coefficients \circ for each of the 2ⁿ states, coefficients of that state \circ therefore holds a superposition of 2ⁿ different values at the same time
- Without entanglement QC would be no more powerful than Classical Computer

- $\alpha |000\rangle + \beta |001\rangle + \gamma |010\rangle + \delta |011\rangle + \varepsilon |100\rangle + \zeta |101\rangle + \eta |110\rangle + \theta |111\rangle$
 - $|\alpha|^{2} + |\beta|^{2} + |\gamma|^{2} + |\delta|^{2} + |\epsilon|^{2} + |\zeta|^{2} + |\eta|^{2} + |\theta|^{2} = 1$

Consolation for Entanglement weirdness

"If you think you understand quantum mechanics, you don't understand quantum mechanics."

1st Alberto Ros Computer Engineering Department University of Murcia Murcia, Spain aros@ditec.um.es

— <u>Richard P. Feynman</u>

A Cost-Effective Entangling Prefetcher for Instructions

> 2nd Alexandra Jimborean Computer Engineering Department University of Murcia Murcia, Spain alexandra.jimborean@um.es

Teleportation

Image Credits: somewhere in marvel gifs

- Unfortunately Teleportation in Quantum **Computing as not this cool**
- Teleportation is more related to transfer of information rather than transfer of matter.

Quantum Teleportation

- Consider a situation... (hypothetically speaking!) • What's app is dead and so are other simple means of sending info, \circ You can just send some really basic bits in a very quite channel nothing more 0
- So Aurora has to send some quantum stuff info to Rodrigo but how? • Just send the amplitudes? • Give up and be silent?

$|\Psi\rangle = a|0\rangle + b|1\rangle$

Image Credits: somewhere in QISKIT

Does teleportation enable faster-than-light communication?

Few Crazy solutions using Quantum Computing

Prime Factorization Problem: Given an Integer N, find its prime factors 15 = <mark>3 x 5</mark>

Shor's Algorithm

- 9999999942014077477 = <mark>3162277633</mark> x 3162277669

Grover's Algorithm

Unsorted database search: Find a given element in a database of size N

Time taken to solve:

Classical Quantum⁻

Why then are any one not building these techniques at a scale!?

- Resilience
- Security

••••

Image Credits:

- 1. from one of the boring references (see reference section)
- 2. one of those cult movie reddit threads

Why not power? At this point a quantum computer needs about ~ 12 Megawatts.

A 100 of those machines could send us "Back to the Future"

Great Scott!

"The average person can only keep 7 (plus or minus 2) new items in their working memory."

Image Credits: Jon Labonski UX design

Image Credits: google, Font Credits: fontmeme.com

NEXT TIME ON ٠

30

- Quantum Memory Hierarchy
- Code Hierarchy
- Quantum Register File
- QASM
- Quantum Compiler Design
- More Crazy Stuff

Image Credits: from one of the boring references (see reference section)

Quantum Hardware

References

• Quantum Computing for

• The Book by Scott Aaronson ->

Quantum Computing for Computer Architects Synthesis Lectures Quantum Country and IBM Reddit threads for QC Nerds!

Image Credits: google and scott's blog

You can find (and not find 😎) me at: nitesh8998.gitlab.io

Image Credits: Google

© 2022 G S Nitesh Narayana All Rights Reserved

Thanks!

Any questions?

