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What is 
Profiling?

It's a tool to optimise things for 
you?

Does the dirty work of making your 
slow code fast!?
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unfortunately(?) U have to make your 
code faster!!

NO!!
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What it can do is, help you do that!!
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How?
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Well that's why we need to learn  profiling
● where your program spent its time.

● which functions called which other functions 
while it was executing.

● which pieces of your program are slower than 
you expected.
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““ Its a tool that does dynamic program 
analysis”
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Dynamic            Static         Algorithmic
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Will be Discussing

Valgrind

GPROF

LIKWID

There is a bonus for you in the end!!

Also what each needs...
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Run tool to 
analyze the 
profile data

Understand 
and analyze 
the profile 
data

Execute your 
program to 
Generate a 
profile data 
file (usually!)

Compile and 
Link program 
with profiling 
enabled

Steps in Profiling
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Profile! 
Profile! 
Profile!

What is it?

What does it contain?

Call Graph Flat Profile
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How do you know who finished FIRST?!

CRAZY!
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Therefore, you need measures to 
measure!
Time(?) is a start...
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yes i know what you are thinking 😁

GPROF
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Gives an execution profile of the program

GNUPROF
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  Hands on Keyboard!
package for 
gprof 

flag to enable 
profiling

binary 
generated

command to execute gprof

profile 
generated 
before
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What's inside the analysis.txt !?🧐
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Contains Call Graph and Flat Profile

● Flat Prof shows how much time your program spent in each 
function and how many times that function was called.

● Call Graph shows, for each function, which functions called it, 
which function it called, how many times.

Let's open in!!
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Take some time and play with it!
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Consider this 
scenario😱

Need a more 
accurate/reliable measure

or may be some other 
measures...
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LIKWID

GPROF

Valgrind
23



a mini toolsuite  with various performance 
analysis measures

LIKWID
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About LIKWID
● Has a variety of tools.

● Gives us a chance to look into hardware metadata -> giving new 
measures.

● The MSRs for starters...
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● A Model-Specific Register , one of those hardware registers that helps us 
debug, trace, measure the program.

● We need them for reading CPU performance counters when an 
operation is done.

● Find the readings in /dev/cpu/*/msr  

MSRs
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The Tools
● likwid-topology: print thread, cache and NUMA topology

● likwid-perfctr: configure and read out hardware performance 
counters on Intel, AMD and ARMv8 processors

● likwid-powermeter: read out RAPL Energy information and get 
info about Turbo mode steps
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● likwid-pin: pin your threaded application (pthread, Intel and gcc 
OpenMP to dedicated processors)

● likwid-bench: Micro benchmarking platform

● likwid-features: Print and manipulate cpu features like hardware 
prefetchers

Cont.
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● likwid-genTopoCfg: Dumps topology information to a file

● likwid-mpirun: Wrapper to start MPI and Hybrid MPI/OpenMP 
applications (Supports Intel MPI, OpenMPI, MPICH and SLURM)

● likwid-perfscope: Frontend to the timeline mode of likwid-perfctr, 
plots live graphs of performance metrics using gnuplot
○

Cont..
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● likwid-memsweeper: Sweep memory of NUMA domains and evict 
cachelines from the last level cache

● likwid-setFrequencies: Tool to control the CPU and Uncore 
frequencies (x86 only)

Cont...

30



Permission denied? Couldn't Find them?

● Depending on the number of CPUs and number of processors, the 
number of msr files may vary.

● Each file is given a MSR NUMBER. We use it to access the respective msr.
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Installing LIKWID

● Link for the repo
https://github.com/RRZE-HPC/likwid

● Follow the steps from that site.

32

https://github.com/RRZE-HPC/likwid


33



  Hands on LIKWID! (perfctr)

Shows supported 
groups

supported counter 
registers and events
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Our binaryGroup to look into

Socket Number Core Index
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Execute and try to infer the 
output

36



Valgrind

LIKWID

BONUS(?)
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a mega toolsuite  with various performance 
analysis measures (memory based?)

Valgrind
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About Valgrind

● Has a variety of tools.

● It can detect many memory-related errors that are common in C 
and C++ programs and that can lead to crashes and 
unpredictable behaviour.

If you don't want to worry about memory leaks start using 
RUST or OCaml !!!
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The Tools
● MemCheck: detects memory management problems.

● Cache-grind: Cache and Branch Predictor profiler, for analysis 
of the behaviour of caches

● Call-grind: extension to cache-grind which provides a call graph
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● Massif: is a heap profiler. Monitors the program’s heap space
● Helgrind: is a thread debugger, for data races in multithreaded programs.
● DRD: similar to Helgrind but takes less memory to perform the analysis

There are other experimental tools in this suite , have a look at them

Cont.
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Why bother about memory leaks or management
you don't want your 
program to always 
come here

this is worse!!
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Try to avoid $ misses !
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Installation
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Valgrind → Cache-Grind
● It gives the statistics of the form, keep them in mind !!:

Xyz
X∈ {I, D, LL}

y∈ {1, L}
z∈ {r,w, mr, mw}

I → Instruction
D → Data

LL → Last Level
r → read
w → write

mr → read miss
mw → write miss
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Lets CacheGrind !

add this with first 
command for branch 
prediction analysis 46



if you want even the 
smallest counts to be 
shown 47
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Take your time and try not to 
miss the $ accesses !
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“ The time it takes to make a decision increases 
with the number and complexity of choices.”

SOOO Many profiling tools around...
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How to Select Which Profiler!?

● Profiler Use Challenges
● Low Impact, Integrated Profiling
● Ease of Use
● Multiple measurements
● Detailed Reporting
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Benchmarking       Vs              Profiling
● Select 2 programs

● Put them against each 
other

● Get a metric/score and 
Compare

YOU TELL ME!!!

52



End...
Bonus?
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So powerful you don't know you witnessed! 

Intel 
VTune

Only an Intro 😎
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Why This
● Pinpoint HOTSPOT identification.
● Supports C, C++, DPC++, Google Go*, Fortran ,Python(!) & more...
● Microarchitecture level profiling!!
● Local and remote data collection
● GUI 😎

● and ofcourse INTEL and much more……………………….
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VTune Flow
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HOTSPOT?🔥

Where in a system or application there is 
significant amount of activity
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Demo 
time!
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Thanks!
You can find me at: 
nitesh8998.gitlab.io

Any questions?
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