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What is
Profiling?
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0!

unfortunately(?) U have to make your
code faster!!



What it can do is, help you do that!!






Well that's why we need to learn profiling

e where your program spent its time.

Optim'
1Zatj
dtion Work Without Profilin

e Which functions called which other functions
while 1t was executing.

e which pieces of your program are slower than
you expected.
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* Its a tool that does dynamic program

analysis”



Dynamic

Static Algorithmic

A o P The Master Method
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Will be Discussing

) GPROF
() LIKWID
(v Valgrind

Also what each needs...

There is a bonus for you in the end!!
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Steps in Profiling

Execute your
program to Understand
Generate a and analyze
profile data the profile
\flle (usua"y!)/ data
Compile and Run tool to
Link program analyze the
with profiling profile data

enabled
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Profile! What is it?

Profile! What does it contain?
Profile!

Call Graph Flat Profile



How do you know who finished FIRST?!
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Therefore, you need measures to

measure!

Time(?) is a start...
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GNEBROF

3 / Gives an execution profile of the program

yes i know what you are thinking &

Image Credits: Google 15



flag to enable
profiling

Hands on Keyhoard!

package for

oprof
S sudo apt install binutils _
S gcc -pg test_gprof.c -o test_gprof binary
S ./test_gprof generated
S 1s gmon
S gprOf teSt_gprOf gmon.out > analysistht
profile
generated

command to execute gprof hefore



What's inside the analysis.txt 1?9



Contains Gall Graph and Flat Profile

o Flat Prof shows how much time your program spent in each
function and how many times that function was called.

e Gall Graph shows, for each function, which functions called it,
which function it called, how many times.

Let's open In!!



Flat profile:

Fach sample counts as 0.01 seconds.

cumulative self el total
time seconds seconds calls ms/call ms/call
96 .43 06.81 0.81 1 810.00 810.00
3.97 9.84 0 .03 T 30.00 840.00
0.00 0.84 0 .00 T 0 .00 810.00
0.00 0.84 T 0 .00 0.00




Call graph (explanation follows

granularity: each sample hit covers 4 byte(s) Tor 1.19% o 6.84 seconds

index % time self children called name
_ 0.81 1/1 main [ 2]
100.0 0.63 0.81 | funcl [1]
30 0.81 | func2

main |2
func
func4
funcl |
func2 (3]
func3
func2 |
func3 (4]

main [2!
func4 |5




Take some time and play with it!



00:01:14:3 Consider
sSGenario

00:01:14:3

Need a more
accurate/reliable measure
00:01:14:3 or may he some other
measures...

00:01:14:3



GPROF

LIKWID

Valgrind



v.vq LIKWID
TOO LS a mini toolsuite with various performance

analysis measures



About LIKWID

e Has a variety of tools.

e Gives us a chance to look into hardware metadata -> giving new
measures.

e The MSRs for starters...
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MSRs

e A Model-Specific Register , one of those hardware registers that helps us
debug, trace, measure the program.

e We need them for reading CPU performance counters when an
operation is done.

e Find the readings in /dev/cpu/*/msr

26



The Tools

o likwid-topology: print thread, cache and NUMA topology

o likwid-perfctr: configure and read out hardware performance
counters on Intel, AMD and ARMv8 processors

o likwid-powermeter: read out RAPL Energy information and get
info about Turbo mode steps
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Cont.

e likwid-pin: pin your threaded application (pthread, Intel and gcc
OpenMP to dedicated processors)

e likwid-bench: Micro henchmarking platform

o likwid-features: Print and manipulate cpu features like hardware
prefetchers

28



Cont..

o likwid-genTopoCfg: Dumps topology information to a file

o likwid-mpirun: Wrapper to start MPI and Hybrid MP1/OpenMP
applications (Supports Intel MP1, OpenMPI, MPIGH and SLURM)

o likwid-perfscope: Frontend to the timeline mode of likwid-perfetr,
plots live graphs of performance metrics using gnuplot



Cont...

e likwid-memsweeper: Sweep memory of NUMA domains and evict
cachelines from the last level cache

e likwid-setFrequencies: Tool to control the CPU and Uncore
frequencies (x86 only)
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Permission denied? Couldn't Find them?

S sudo modprobe msr

S sudo chmod +rw /dev/cpu

e Depending on the number of GPUs and number of processors, the
number of msr files may vary.
e Each file is given a MSR NUMBER. We use it to access the respective msr.



Installing LIKWID

e Link for the repo
https://github.com/RRZE-HPG/likwid

e Follow the steps from that site.
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https://github.com/RRZE-HPC/likwid

tar -xjt likwid-<VERSION>.tar.bz2
cd likwid-<VERSION-=>
vi config.mk

NELEE
sudo make install




Hands on LIKWID! (perfetr)

Shows supported
groups

S likwid-perfctr -a

S likwid-perfctr -e | less

supported counter
registers and events



Socket Number Core Index

S likwid-perfctr -C S8:1 -g BRANCH ./test_gprof

Group to look into Our binary



Execute and try to infer the
output




LIKWID

Valgrind

BONUS(?)




Valgrind

Valgrind

a mega toolsuite with various performance
o analysis measures (memory based?)
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About Valgrind

e Has a variety of tools.
e It can detect many memory-related errors that are common in G

and C++ programs and that can lead to crashes and
unpredictable hehaviour.

If you don't want to worry about memory leaks start using

RUST or 0Caml !I!
R e ocaml

Icon Credits: Google



The Tools

e MemCheck: detects memory management problems.

e Cache-grind: Gache and Branch Predictor profiler, for analysis
of the hehaviour of caches

e Gall-grind: extension to cache-grind which provides a call graph
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Cont.

o Massif: is a heap profiler. Monitors the program’s heap space

e Helgrind: is a thread debugger, for data races in multithreaded programs.

e DRD: similar to Helgrind but takes less memory to perform the analysis

There are other experimental tools in this suite , have a look at them



Why hother about memory leaks or management

An Example Memory Hierarchy

Smaller, LO:

program to always aste fegister } crurmgioms
an om L1 cac
tli L1/ on-chip L1
come here costler y s |

you don't want your

CPU registers hold words retrieved

L1 cache holds cache lines retrieved

from the L2 cache memory
cache (SRAM) } L2 cache holds cache lines

retrieved from main memory

main memory

(DRAN) e this is worse!!

r blocks retrieved from local

disks
local secondary storage ‘

(local disks) )
storage Loclal dlsl:rs hold files
+ retrieved from disks on
devices remote network servers
L5: remote secondary storage !

(distributed file systems, Web servers)
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Try to avoid § misses !



Installation

S tar -zxvf valgrind

S cd valgrind
S ./configure

S make -j4
S sudo make install




Valgrind — Cache-Grind

o It gives the statistics of the form, keep them in mind !!:

| — Instruction

XVZ D — Data
LL — Last Level

Xe {l, D, LL} r — read

ve {1, L} w — write

z€ {r,w, mr, mw} mr — read miss

mw — write miss
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Lets CacheGrind !

S valgrind --tool=cachegrind
S cg_annotate

. add this with first
--branch-sim=yes command for branch

prediction analysis




I1T cache:
D1 cache:

LL cache:

Command:

Events recorded:
Fvents shown:

P .
Fvent sort order:

Threshold:

Chosen for annotation:

Auto-annotation:

If you want even the
smallest counts to he

shown

65536 B, 64 B, 2-way assoclative
65536 B, 64 B, 2-way assoclative

262144 B, 64 B, 8-way assoclative
concord vg_to_ucode.c

- ITmr ILmr Dr DImr DLmr Dw D1mw
ILmr Dr DImr DLmr Dw D1mw
ILmr Dr DImr DLmr Dw D1mw




S cg_annotate

Ir Ilmr ILmr Dr Dimr DLmr Dw Dimw DLmw




Take your time and try not to
miss the S accesses !



Hick’s Law

g}

Image Credits: Jon Labonski UX design

*“ The time it takes to make a decision increases
with the number and complexity of choices.”

S000 Many profiling tools around...
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How to Select Which Profiler!?

e Profiler Use Challenges

e Low Impact, Integrated Profiling
o Ease of Use

e Multiple measurements

e Detailed Reporting
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Benchmarking Vs Profiling

o Select 2 programs

e Put them against each
other

e Get a metric/score and You TEI-I- ME"’

Compare
|®.
‘Q_i' ‘N_&’
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Bonus?



€ Intel
PARALLEL

STUDIO XE Viune

S0 powerful you don't know you witnessed!

Only an Intro




why This

e Pinpoint HOTSPOT identification.
e Supports G, G++, DPC++, Google Go*, Fortran ,Python(!) & more...

e Microarchitecture level profiling!!

e Local and remote data collection

o GUI ==

o and ofcourse INTEL and much more.......ooceeeeeeeeeeneee.
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1. Start

VTune Amplifier

« As Standalone

o GUI

o Command line
« From Studio package

o Intel Parallel Studio XE

o Intel System Studio

o Intel Media Server Studio
« Within Microsoft* Visual Studio

Viune Flow

2. Configure and

Run

Analysis

- WHERE

o
C

Local host
Remote system

o Arbitrary host
o Android device

- WHAT

o Application

o

Process

o System

- HOW

C

C
C
o

Hotspots
Microarchitecture
Parallelism

Platform analyses

3. Analyze
Performance Data

* Summary window
« Source/Assembly pane
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HOTSPOT?.4

Where in a system or application there is
significant amount of activity



time!



Any questions?

You can find me at:
nitesh8998.gitlab.io



