Profiling

Workshop Repo

https://gitlab.com/hprese/workshops/2019/hpe_workshop

What is
Profiling?

Image Credits: smarthear.com

0!

unfortunately(?) U have to make your
code faster!!

What it can do is, help you do that!!

Well that's why we need to learn profiling

e where your program spent its time.

Optim'
1Zatj
dtion Work Without Profilin

e Which functions called which other functions
while 1t was executing.

e which pieces of your program are slower than
you expected.

Image Credits: smarthear.com 4

* Its a tool that does dynamic program

analysis”

Dynamic

Static Algorithmic

A o P The Master Method

crypto/subtle pUbliC ; Krogram {

‘‘‘‘‘‘‘‘‘

T et e T <ar(?) oo

i ‘ STler Y, Y . then
: \. sync/atomic rt.urn r . i O(nd log n) ifa= b? (Casel)
\%w‘ syscall ¥ , T(n) = 1 0(n%) ifa < b? (Case2)
mternallsyscall throw new NoSuchElementException();) O(nlogb a) ifa > bd (Case 3)

Image Credits: Google

Will be Discussing

) GPROF
() LIKWID
(v Valgrind

Also what each needs...

There is a bonus for you in the end!!
10

Steps in Profiling

Execute your
program to Understand
Generate a and analyze
profile data the profile
\flle (usua"y!)/ data
Compile and Run tool to
Link program analyze the
with profiling profile data

enabled

11

Profile! What is it?

Profile! What does it contain?
Profile!

Call Graph Flat Profile

How do you know who finished FIRST?!

Image Credits: Google

Therefore, you need measures to

measure!

Time(?) is a start...

14

GNEBROF

3 / Gives an execution profile of the program

yes i know what you are thinking &

Image Credits: Google 15

flag to enable
profiling

Hands on Keyhoard!

package for

oprof
S sudo apt install binutils _
S gcc -pg test_gprof.c -o test_gprof binary
S ./test_gprof generated
S 1s gmon
S gprOf teSt_gprOf gmon.out > analysistht
profile
generated

command to execute gprof hefore

What's inside the analysis.txt 1?9

Contains Gall Graph and Flat Profile

o Flat Prof shows how much time your program spent in each
function and how many times that function was called.

e Gall Graph shows, for each function, which functions called it,
which function it called, how many times.

Let's open In!!

Flat profile:

Fach sample counts as 0.01 seconds.

cumulative self el total
time seconds seconds calls ms/call ms/call
96 .43 06.81 0.81 1 810.00 810.00
3.97 9.84 0 .03 T 30.00 840.00
0.00 0.84 0 .00 T 0 .00 810.00
0.00 0.84 T 0 .00 0.00

Call graph (explanation follows

granularity: each sample hit covers 4 byte(s) Tor 1.19% o 6.84 seconds

index % time self children called name
_ 0.81 1/1 main [2]
100.0 0.63 0.81 | funcl [1]
30 0.81 | func2

main |2
func
func4
funcl |
func2 (3]
func3
func2 |
func3 (4]

main [2!
func4 |5

Take some time and play with it!

00:01:14:3 Consider
sSGenario

00:01:14:3

Need a more
accurate/reliable measure
00:01:14:3 or may he some other
measures...

00:01:14:3

GPROF

LIKWID

Valgrind

v.vq LIKWID
TOO LS a mini toolsuite with various performance

analysis measures

About LIKWID

e Has a variety of tools.

e Gives us a chance to look into hardware metadata -> giving new
measures.

e The MSRs for starters...

25

MSRs

e A Model-Specific Register , one of those hardware registers that helps us
debug, trace, measure the program.

e We need them for reading CPU performance counters when an
operation is done.

e Find the readings in /dev/cpu/*/msr

26

The Tools

o likwid-topology: print thread, cache and NUMA topology

o likwid-perfctr: configure and read out hardware performance
counters on Intel, AMD and ARMv8 processors

o likwid-powermeter: read out RAPL Energy information and get
info about Turbo mode steps

27

Cont.

e likwid-pin: pin your threaded application (pthread, Intel and gcc
OpenMP to dedicated processors)

e likwid-bench: Micro henchmarking platform

o likwid-features: Print and manipulate cpu features like hardware
prefetchers

28

Cont..

o likwid-genTopoCfg: Dumps topology information to a file

o likwid-mpirun: Wrapper to start MPI and Hybrid MP1/OpenMP
applications (Supports Intel MP1, OpenMPI, MPIGH and SLURM)

o likwid-perfscope: Frontend to the timeline mode of likwid-perfetr,
plots live graphs of performance metrics using gnuplot

Cont...

e likwid-memsweeper: Sweep memory of NUMA domains and evict
cachelines from the last level cache

e likwid-setFrequencies: Tool to control the CPU and Uncore
frequencies (x86 only)

30

Permission denied? Couldn't Find them?

S sudo modprobe msr

S sudo chmod +rw /dev/cpu

e Depending on the number of GPUs and number of processors, the
number of msr files may vary.
e Each file is given a MSR NUMBER. We use it to access the respective msr.

Installing LIKWID

e Link for the repo
https://github.com/RRZE-HPG/likwid

e Follow the steps from that site.

32

https://github.com/RRZE-HPC/likwid

tar -xjt likwid-<VERSION>.tar.bz2
cd likwid-<VERSION-=>
vi config.mk

NELEE
sudo make install

Hands on LIKWID! (perfetr)

Shows supported
groups

S likwid-perfctr -a

S likwid-perfctr -e | less

supported counter
registers and events

Socket Number Core Index

S likwid-perfctr -C S8:1 -g BRANCH ./test_gprof

Group to look into Our binary

Execute and try to infer the
output

LIKWID

Valgrind

BONUS(?)

Valgrind

Valgrind

a mega toolsuite with various performance
o analysis measures (memory based?)

Image Credits: Valgrind group 38

About Valgrind

e Has a variety of tools.
e It can detect many memory-related errors that are common in G

and C++ programs and that can lead to crashes and
unpredictable hehaviour.

If you don't want to worry about memory leaks start using

RUST or 0Caml !I!
R e ocaml

Icon Credits: Google

The Tools

e MemCheck: detects memory management problems.

e Cache-grind: Gache and Branch Predictor profiler, for analysis
of the hehaviour of caches

e Gall-grind: extension to cache-grind which provides a call graph

40

Cont.

o Massif: is a heap profiler. Monitors the program’s heap space

e Helgrind: is a thread debugger, for data races in multithreaded programs.

e DRD: similar to Helgrind but takes less memory to perform the analysis

There are other experimental tools in this suite , have a look at them

Why hother about memory leaks or management

An Example Memory Hierarchy

Smaller, LO:

program to always aste fegister } crurmgioms
an om L1 cac
tli L1/ on-chip L1
come here costler y s |

you don't want your

CPU registers hold words retrieved

L1 cache holds cache lines retrieved

from the L2 cache memory
cache (SRAM) } L2 cache holds cache lines

retrieved from main memory

main memory

(DRAN) e this is worse!!

r blocks retrieved from local

disks
local secondary storage ‘

(local disks))
storage Loclal dlsl:rs hold files
+ retrieved from disks on
devices remote network servers
L5: remote secondary storage !

(distributed file systems, Web servers)

Image Credits: Google & CMU 42

Try to avoid § misses !

Installation

S tar -zxvf valgrind

S cd valgrind
S ./configure

S make -j4
S sudo make install

Valgrind — Cache-Grind

o It gives the statistics of the form, keep them in mind !!:

| — Instruction

XVZ D — Data
LL — Last Level

Xe {l, D, LL} r — read

ve {1, L} w — write

z€ {r,w, mr, mw} mr — read miss

mw — write miss

45

Lets CacheGrind !

S valgrind --tool=cachegrind
S cg_annotate

. add this with first
--branch-sim=yes command for branch

prediction analysis

I1T cache:
D1 cache:

LL cache:

Command:

Events recorded:
Fvents shown:

P .
Fvent sort order:

Threshold:

Chosen for annotation:

Auto-annotation:

If you want even the
smallest counts to he

shown

65536 B, 64 B, 2-way assoclative
65536 B, 64 B, 2-way assoclative

262144 B, 64 B, 8-way assoclative
concord vg_to_ucode.c

- ITmr ILmr Dr DImr DLmr Dw D1mw
ILmr Dr DImr DLmr Dw D1mw
ILmr Dr DImr DLmr Dw D1mw

S cg_annotate

Ir Ilmr ILmr Dr Dimr DLmr Dw Dimw DLmw

Take your time and try not to
miss the S accesses !

Hick’s Law

g}

Image Credits: Jon Labonski UX design

*“ The time it takes to make a decision increases
with the number and complexity of choices.”

S000 Many profiling tools around...

50

How to Select Which Profiler!?

e Profiler Use Challenges

e Low Impact, Integrated Profiling
o Ease of Use

e Multiple measurements

e Detailed Reporting

51

Benchmarking Vs Profiling

o Select 2 programs

e Put them against each
other

e Get a metric/score and You TEI-I- ME"’

Compare
|®.
‘Q_i' ‘N_&’
52

Bonus?

€ Intel
PARALLEL

STUDIO XE Viune

S0 powerful you don't know you witnessed!

Only an Intro

why This

e Pinpoint HOTSPOT identification.
e Supports G, G++, DPC++, Google Go*, Fortran ,Python(!) & more...

e Microarchitecture level profiling!!

e Local and remote data collection

o GUI ==

o and ofcourse INTEL and much more.......ooceeeeeeeeeeneee.

95

1. Start

VTune Amplifier

« As Standalone

o GUI

o Command line
« From Studio package

o Intel Parallel Studio XE

o Intel System Studio

o Intel Media Server Studio
« Within Microsoft* Visual Studio

Viune Flow

2. Configure and

Run

Analysis

- WHERE

o
C

Local host
Remote system

o Arbitrary host
o Android device

- WHAT

o Application

o

Process

o System

- HOW

C

C
C
o

Hotspots
Microarchitecture
Parallelism

Platform analyses

3. Analyze
Performance Data

* Summary window
« Source/Assembly pane

56

HOTSPOT?.4

Where in a system or application there is
significant amount of activity

time!

Any questions?

You can find me at:
nitesh8998.gitlab.io

