
Profiling
G S Nitesh Narayana

© 2019 G S Nitesh Narayana All Rights Reserved 1

https://gitlab.com/hprcse/workshops/2019/hpc_workshop

Workshop Repo

2

What is
Profiling?

It's a tool to optimise things for
you?

Does the dirty work of making your
slow code fast!?

Image Credits: smartbear.com 3

unfortunately(?) U have to make your
code faster!!

NO!!
4

What it can do is, help you do that!!

5

How?
6

Well that's why we need to learn profiling
● where your program spent its time.

● which functions called which other functions
while it was executing.

● which pieces of your program are slower than
you expected.

Image Credits: smartbear.com 7

““ Its a tool that does dynamic program
analysis”

8

Dynamic Static Algorithmic

Image Credits: Google 9

Will be Discussing

Valgrind

GPROF

LIKWID

There is a bonus for you in the end!!

Also what each needs...

10

Run tool to
analyze the
profile data

Understand
and analyze
the profile
data

Execute your
program to
Generate a
profile data
file (usually!)

Compile and
Link program
with profiling
enabled

Steps in Profiling

11

Profile!
Profile!
Profile!

What is it?

What does it contain?

Call Graph Flat Profile
12

How do you know who finished FIRST?!

CRAZY!

Image Credits: Google 13

Therefore, you need measures to
measure!
Time(?) is a start...

14

yes i know what you are thinking 😁

GPROF

Image Credits: Google

Gives an execution profile of the program

GNUPROF

15

 Hands on Keyboard!
package for
gprof

flag to enable
profiling

binary
generated

command to execute gprof

profile
generated
before

16

What's inside the analysis.txt !?🧐

17

Contains Call Graph and Flat Profile

● Flat Prof shows how much time your program spent in each
function and how many times that function was called.

● Call Graph shows, for each function, which functions called it,
which function it called, how many times.

Let's open in!!
18

19

20

Take some time and play with it!

21

Consider this
scenario😱

Need a more
accurate/reliable measure

or may be some other
measures...

22

LIKWID

GPROF

Valgrind
23

a mini toolsuite with various performance
analysis measures

LIKWID

Image Credits: LIKWID group 24

About LIKWID
● Has a variety of tools.

● Gives us a chance to look into hardware metadata -> giving new
measures.

● The MSRs for starters...

25

● A Model-Specific Register , one of those hardware registers that helps us
debug, trace, measure the program.

● We need them for reading CPU performance counters when an
operation is done.

● Find the readings in /dev/cpu/*/msr

MSRs

26

The Tools
● likwid-topology: print thread, cache and NUMA topology

● likwid-perfctr: configure and read out hardware performance
counters on Intel, AMD and ARMv8 processors

● likwid-powermeter: read out RAPL Energy information and get
info about Turbo mode steps

27

● likwid-pin: pin your threaded application (pthread, Intel and gcc
OpenMP to dedicated processors)

● likwid-bench: Micro benchmarking platform

● likwid-features: Print and manipulate cpu features like hardware
prefetchers

Cont.

28

● likwid-genTopoCfg: Dumps topology information to a file

● likwid-mpirun: Wrapper to start MPI and Hybrid MPI/OpenMP
applications (Supports Intel MPI, OpenMPI, MPICH and SLURM)

● likwid-perfscope: Frontend to the timeline mode of likwid-perfctr,
plots live graphs of performance metrics using gnuplot
○

Cont..

29

● likwid-memsweeper: Sweep memory of NUMA domains and evict
cachelines from the last level cache

● likwid-setFrequencies: Tool to control the CPU and Uncore
frequencies (x86 only)

Cont...

30

Permission denied? Couldn't Find them?

● Depending on the number of CPUs and number of processors, the
number of msr files may vary.

● Each file is given a MSR NUMBER. We use it to access the respective msr.
31

Installing LIKWID

● Link for the repo
https://github.com/RRZE-HPC/likwid

● Follow the steps from that site.

32

https://github.com/RRZE-HPC/likwid

33

 Hands on LIKWID! (perfctr)

Shows supported
groups

supported counter
registers and events

34

Our binaryGroup to look into

Socket Number Core Index

35

Execute and try to infer the
output

36

Valgrind

LIKWID

BONUS(?)
37

a mega toolsuite with various performance
analysis measures (memory based?)

Valgrind

Image Credits: Valgrind group 38

About Valgrind

● Has a variety of tools.

● It can detect many memory-related errors that are common in C
and C++ programs and that can lead to crashes and
unpredictable behaviour.

If you don't want to worry about memory leaks start using
RUST or OCaml !!!

Icon Credits: Google 39

The Tools
● MemCheck: detects memory management problems.

● Cache-grind: Cache and Branch Predictor profiler, for analysis
of the behaviour of caches

● Call-grind: extension to cache-grind which provides a call graph

40

● Massif: is a heap profiler. Monitors the program’s heap space
● Helgrind: is a thread debugger, for data races in multithreaded programs.
● DRD: similar to Helgrind but takes less memory to perform the analysis

There are other experimental tools in this suite , have a look at them

Cont.

41

Why bother about memory leaks or management
you don't want your
program to always
come here

this is worse!!

Image Credits: Google & CMU 42

Try to avoid $ misses !

43

Installation

44

Valgrind → Cache-Grind
● It gives the statistics of the form, keep them in mind !!:

Xyz
X∈ {I, D, LL}

y∈ {1, L}
z∈ {r,w, mr, mw}

I → Instruction
D → Data

LL → Last Level
r → read
w → write

mr → read miss
mw → write miss

45

Lets CacheGrind !

add this with first
command for branch
prediction analysis 46

if you want even the
smallest counts to be
shown 47

48

Take your time and try not to
miss the $ accesses !

49

“ The time it takes to make a decision increases
with the number and complexity of choices.”

SOOO Many profiling tools around...

Image Credits: Jon Labonski UX design 50

How to Select Which Profiler!?

● Profiler Use Challenges
● Low Impact, Integrated Profiling
● Ease of Use
● Multiple measurements
● Detailed Reporting

51

Benchmarking Vs Profiling
● Select 2 programs

● Put them against each
other

● Get a metric/score and
Compare

YOU TELL ME!!!

52

End...
Bonus?

53

So powerful you don't know you witnessed!

Intel
VTune

Only an Intro 😎

54

Why This
● Pinpoint HOTSPOT identification.
● Supports C, C++, DPC++, Google Go*, Fortran ,Python(!) & more...
● Microarchitecture level profiling!!
● Local and remote data collection
● GUI 😎

● and ofcourse INTEL and much more……………………….
55

VTune Flow

56

HOTSPOT?🔥

Where in a system or application there is
significant amount of activity

57

Demo
time!

58

Thanks!
You can find me at:
nitesh8998.gitlab.io

Any questions?

59© 2019 G S Nitesh Narayana All Rights Reserved

